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EXECUTIVE SUMMARY 
This deliverable is the concluding document, representing an accompanying report for the 
automatic image tools designed and developed as the main activity of Task 8.5 of Work 
Package 8 in NAUTILOS. As foreseen, the report describes the various steps performed within 
Task 8.5, starting from the definition of a set of various problems to be tackled, in close 
connections with end-users or experts partners within NAUTILOS; and then, moving to the 
collection and analysis of various imagery datasets to be used in the process; finally the 
developments of various automatic image analysis algorithms, on the basis of collected 
requirements and constraints is described. Different types of categorization or classification 
are required by each diverse environmental domain tool. Outcomes of this Task will be 
refined and improved within Task 9.5 in Work Package 9 through continuous feedbacks from 
experts and end-users, also exploiting the first testing and demonstration activities in 
NAUTILOS. 
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I. INTRODUCTION: TASK OBJECTIVES AND DELIVERABLE OUTLINE 
This document represents an accompanying report to all the tools developed in the context 
of Task 8.5 of NAUTILOS. The idea behind this task was to provide tools for the automatic 
processing of some of the many different types of imagery data available among the different 
partners in the project. The first, very important step was to define with different partners 
the relevant domains where some type of processing could be studied and brought towards 
an automatic analysis. In addition, a search was carried out for available images, both from 
the same partners and in open access repositories. 
Since the proposal stage, some of these tasks were already defined, while others raised from 
the various partners who needed support in the analysis phase of some of the tasks they have 
been facing. As an example, the categorisation of benthic imagery was already an open 
problem which was identified to be faced since the beginning, as it was also possibly 
connected with the Citizen Science (CS) activities (e.g. images acquired by divers). 
Among any other type of problems, two different types of analysis raised from the partners 
within NAUTILOS. The first was pertaining the analysis of satellite imageries, with a particular 
reference to the Sea Surface Temperatures (SST), as being central to the analysis of an 
environmental problem concerning the identification of upwelling regimes. 
The other type of analysis raised by another NAUTILOS partner, was concerning the detection 
and counting of seafloor fauna. In particular, the focus is on a specific marine fauna species, 
in order to detect and count the burrows constructed on the seafloor by Nephrops norvegicus, 
a seafloor resident species of crustacean lobster often called “scampi”. 
The report is arranged as follows: the following section Errore. L'origine riferimento non è 
stata trovata. reports a description of the various different scenarios where data acquisition 
takes place and the specifics of the adopted sensing technologies; section III concerns a 
summary of the available methods found in the dedicated literature while the actually 
implemented algorithms are discussed in section IV; section V summarises the report 
providing conclusive discussions. 
 

II. ENVIRONMENTAL DOMAINS AND IMAGERY TYPOLOGIES 
In this section, a brief description of the distinctive features of each different scenario is given 
along with the specifics of the various imagery sets collected and analysed for this task. 

1. REMOTE SENSING SCENARIO 

The identification and classification of upwelling features in a marine ecosystem has been 
performed by experts by looking at SST maps of the area of interest. These maps are compiled 
using data coming from satellite missions; the same data have been used as input in the 
automatic classification tool described in section IV, subsection Errore. L'origine riferimento 
non è stata trovata. below. 
For the SST analysis, satellite data from 2009 to 2017 has been retrieved from two different 
sources: EUMETSAT’s Metop programme [1] and NASA’s Aqua satellite [2]; they will be 
referred to respectively as “Metop dataset” and “Aqua dataset” hereafter. 
The Metop dataset contains data gathered from the Advanced Very High Resolution 
Radiometer (AVHRR) of either Metop-A (2009–2016 data) or Metop-B (2017 data) satellites, 
processed at level L2P and binned in a single netCDF-4 file every 3 minutes, for a total of 480 
images per day covering the entire globe, with a spatial resolution of 1 km at nadir and a 
temperature resolution of 0.01 °C. 
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The Aqua dataset contains data gathered from the Moderate Resolution Imaging 
Spectroradiometer (MODIS), processed at level L2P and binned in a single netCDF-4 file every 
5 minutes, for a total of 288 images per day covering the entire globe, with a spatial resolution 
of 1 km at nadir and a temperature resolution of 0.005 °C. 
In both cases, for each recorded SST value, the files store additional information, such as the 
latitude/longitude, the exact time of detection and a series of geophysical and navigational 
metadata. Moreover, a quality level is assigned to each value, meaning that it is possible for 
the end user to estimate the reliability of the data. 
Both datasets can be openly accessed from the respective institution’s websites; only files 
that contain data within the area of interest were downloaded. 

2. CLOSE RANGE SENSING SCENARIO 

Acoustic and optical sensing represent the most effective sensing technologies in the 
underwater environment. Concerning the observation and survey of marine underwater 
biological habitats, optical sensing is the first choice technology in the specific NAUTILOS 
frame. 
The choice for the optical sensor class is also motivated by the need for the underwater scene 
survey task to be integrated and enriched with the citizen science involvement, whose typical 
sensing equipment consists of commercial off-the-shelf low cost devices, usually not 
developed for environmental mapping tasks carried out in hostile and complex frameworks, 
such as the underwater one. In this sense, optical sensors represent a proper trade off 
between the requirement of surveying a given underwater scenario with sufficient accuracy, 
either in terms of morphology and geometry representation as well as for its color 
information, and the need to choose largely diffused low cost devices in order to engage the 
largest possible portion of citizenry. Data collected by optical sensors operating in the visible 
band, find fruitful exploitation in biological marine tasks concerning marine fauna census or 
health status assessment of marine habitats. These two case studies have both been covered 
in NAUTILOS, adopting the approaches discussed in the following. 
In NAUTILOS the mentioned optical cameras are exploited to capture high resolution images 
of a marine scene in order to perform flora population monitoring and safeguarding within 
predefined marine areas. For this purposes images’ quality is usually high in terms of pixel 
resolution and color representation, so as to ensure the informative content in the scene is 
properly captured. The captured images can then be fed to classification algorithms aiming at 
a categorisation of each pixel. 
Optical sensors are also exploited to perform specimen counting dedicated to specific fauna 
species, as in the case of Nephrops norvegicus (in the following Nephrops) burrows counting, 
a biological marine topic with large relevance both from a commercial point of view as well 
as for research purposes. Nephrops species population is usually assessed by means of a 
seafloor sledge, equipped with optical cameras downward and slanted looking. A surface 
vessel controls the sledge trajectory through a cable connection, which also allows to transfer 
the acquired videos. The goal is to perform a counting of the nephrops burrows that intercept 
the field of view of the camera, in order to later extrapolate a general statistics of the 
population numerosity. The standard methodology involves acquisitions filmed on the seabed 
at a grid of stations conducting TV tows for 10 minutes. Each country in Europe has adopted 
different sampling designs, from random stratifications of the stations up to fix grids, which 
better fits the grounds. 
Both the mentioned topics will be further discussed in the following sections. 
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III. STATE OF THE ART OF AUTOMATIC IMAGE ANALYSIS ALGORITHMS 
In this section a brief report about the existing literature devoted to each of the above 
mentioned topics is provided. The main subdivision follows the path of the different 
algorithms developed in the activities of Task 8.5: firstly the SST analysis looking to identify 
temperature patterns, then the benthic imagery classification, and lastly, reaching the 
seabed, the seafloor fauna detection problem. 

1. SEA SURFACE TEMPERATURE PATTERN CLASSIFICATION 

In the marine environment, the upwelling is the phenomenon of the upward vertical 
transport of cold, nutrient-rich water, mainly due to the action of winds and the Earth 
rotation. Upwelling ecosystems are among the most productive ones in the global ocean [3]; 
in fact, despite covering about 1% of the global sea surface, they account for 7% of the total 
marine production and more than 20% of the global fish catches. Understanding the 
behaviour of an upwelling ecosystem means not only to be able to study the effects of climate 
change in such environments, which are still under investigation [4], but also to develop 
appropriate and effective countermeasures for the preservation of the ecosystem in case of 
accidents (e.g. oil spills [5]). 

In this context, the identification of mesoscale upwelling events plays a central role. 
Historically this task has been performed by experts by looking at the SST maps, compiled 

from satellite data. As part of Task 8.5 of NAUTILOS, the analysis focused on the Iberia/Canary 
Current System, which is one of the most interesting and less studied upwelling ecosystem 

[6]; in particular, in the area near the south-western coast of the Iberian Peninsula (latitude 
between 35° N and 40° N, longitude between 12° W and 6° W), four patterns of SST linked to 

upwelling events have been identified (see  

The provided annotation consists of a Microsoft® Excel table with one row per second, linked 
with the observation note (e.g. “1 system left-centre + 1 collapsed right”), and the burrow 
count for that second, i.e. how many burrow systems in that second. 
Following the extensive studies, since the early 2010s, in the ICES Working Group, the 
definition and characterising “signatures” of the Nephrops burrows have been outlined. For 
instance the appearance, the shape, and other significative features have been identified; in 
the following Figure 21 a sample of these is shown. 
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Figure 21. Significative signatures of a Nephrops burrow system. 

In the figure, the numbered areas show the following features: 
1. Crescentiform entrance of the burrow; 
2. Sediment ejecta and radial scrapings around the entrance. Claw or pereiopod indents. 

“Drive-way” 
3. Single to multiple entrances, focusing on an apparent “raised” centrum 
4. Nephrops presence 

Moreover, some high-level guidelines have been suggested to allow for a more standardised 
classification by the various ICES Working Groups experiences . These guidelines were helpful 
in the design of the algorithm to develop a method that was as close as possible to the 
procedures followed by the experts in their manual (i.e. visual) efforts. The main guidelines 
are as follows: 

• Only count systems or parts of a system that cross an imaginary line just off the 
bottom of the screen. 

• Include an entrance to a burrow if part of the shadow is still within sight as it crosses 
the line. 

• Look for groups of similarly sized entrances radiating from a centrum, then look for 
Nephrops’ signatures. 

• In poor visibility conditions, distinguishing the signatures will be more challenging; due 
to the low contrast, hemispherical entrances may appear as dark circular entrances. 
The signatures will appear less clear, but the ejected sediments and the disposition of 
the inlets will be the primary indicators. 

• In the absence of Nephrops signatures, dismiss: 
o vertical holes; 
o flat holes with curved scrapings, sediment stacked in mounds. 

• If in doubt, leave it out. 
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• Distance covered whilst the view is obscured by cloud and lifting needs to be 
discounted. 

• Count and record in seconds, only for the period the sledge is moving. 

1.1. The algorithm and the GUI 
Following this and the meetings with experts who manually and visually classify the video, a 
tool based on developed algorithms and usable through a graphical user interface (GUI) has 
been designed to visualise better and test the automatic burrow detection tool. In the 
following Figure 22, the GUI is shown upon its loading. 
 

 
Figure 22. The Graphical User Interface developed for the Nephrops burrow detection tool. 

The GUI is divided into three main areas: the left-centre panel will be filled by the images to 
be processed; in the centre-right and right panels, the graphs showing information will be 
represented; while the bottom part of the interface contains the buttons and fields used for 
controlling the tool (e.g. the button for loading a video file, for automatically processing a 
range of frames, for processing a single frame or the next one…), for viewing the video/frame 
information (e.g. video length, current frame number and time within the video…), as well as 
for setting the processing parameters (e.g. sensibility of the processing filters, the minimum 
size of holes, tracking and thresholding parameters for the geometries). 
The first step to perform is selecting and loading the video to be analysed. An apparent 
problem can be seen as soon as the video is loaded due to the interlaced video acquired from 
TV recording (Figure 23). Thus, the first preprocessing step was to remove this interlacement 
and improve the single frame appearance. The difference can be seen in the following Figure 
24 from the same frame after being loaded (left), and once it has been preprocessed, and 
ready for the beginning of processing (right). 
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Figure 23. Loaded video file from GUI, showing first original frame. 

 

  
Figure 24. Example of an original frame of the video (left) and after pre-processing (right). 

The general processing steps foresee two different analysis phases: only for the first frame 
the holes identification and selection, followed by the analysis and identification of the 
structures; on the subsequent frames, these first steps are repeated, but then the optical flow 
is used to understand and create connections between the identified holes and mainly among 
the identified structures. The processing flow diagram is shown in Figure 25. 
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Figure 25. Flow diagram of the Nephrops burrow algorithm. 

As a first processing step, holes are recognised through the identification of connected 
regions in the negative image using adaptive thresholding. The result of this processing is 
shown in the rightmost panel (blue/yellow coloured graph) of the GUI (see Figure 26). 
 

 
Figure 26. Initial processing results before filtering. 

Subsequent processing steps filter over the detected holes to dismiss those below thresholds 
for dimension, shape, or position. Moreover, a colour histogram detects possible shadows 
and rejects them from the potential holes. Once the number of candidate holes is reduced, 
the geometric features are computed to analyse the shapes further. Features like: area, 
perimeter, the major axis of the area, eccentricity and circularity are extracted as well as the 
bounding box of each candidate hole. 
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Based on these parameters, rules have been defined for evaluating proximity, shape 
consistency, distances among holes and similarity by other geometric features. Based on 
these factors, structures composing a burrow system are identified. In the following Figure 
27 the detection and identification of a structure, identified with its bounding box (green 
rectangle) and its composing holes (inside the red circles) are highlighted. 
 

 
Figure 27. Detection and identification of holes (red circles) and the structure (highlighted green rectangle) composed by 
these holes; the holes in white circles are identified as candidate holes but dismissed and not associated with the structure. 

The figure also shows some holes (in white circles) that have been identified as candidate 
holes but then filtered and discarded from the identified structure, due to a missing 
correspondence to the structure’s geometric and appearance parameters. 
Another example of filtered areas is shown in the following Figure 28; here, the noise brought 
in the video by the cloud of sand caused by the movement of the sledge on the left side is 
identified and easily filtered out as a false alarm and highlighted in the large white circle. The 
small numbers next to the circles represent the dimension of the identified connected areas, 
regardless of whether they belong to a structure. Furthermore, the text box above the 
processing frame shows statistics and information about the holes and structures identified 
in the current frame. 
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Figure 28. Detection and identification of holes and structure (red circles, yellow rectangle) composed by these holes; the 
detected area in the white circle is dismissed and not associated with the structure. 

The next step, applied to all subsequent frames of the video, consists of the same detection 
and filtering steps as mentioned above, followed by an optical flow computation between the 
current frame structures and holes and the previous frame ones. 
These optical flows are computed and then filtered, considering the known motion of the 
sledge and the geometric features of both the holes and structures. The optical flows are 
shown in the GUI central-right graphs (see Figure 29). A confusion matrix is computed 
associating holes/structures in frame 𝑖 and in frame 𝑖 − 1. This matrix is also important to 
understand whether a structure is persistent in subsequent frames or changed so that it 
should be identified as a new structure. 
 

 
Figure 29. Highlight of the holes (lower yellow circle) and structures (upper yellow-circle) optical flows between the current 
frame and previous one. 

More than one structure can be present on the same frame, and the algorithm is developed 
to keep track and count them separately. In Figure 30 an example with two different 
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structures was detected, while in Figure 31 an instance with 3 separate structures on the 
same frame is shown. In both these situations, it can be seen that the tracking of the 
structures, shown in the upper-right-centre panel, is maintained. For the 2 structures case, 
the upper one (#8) is not present in the tracking because it is a newly identified structure and 
thus coloured in red. 
 

 
Figure 30. Example of multiple structures (2) detected. 

 
Figure 31. Another example with three different structures identified. 

In this last example, the structures numbered #102 (with holes in red) and #104 (with holes 
in blue) are identified as different and separated ones: this is due to differences in the 
geometry of the two groups of composing holes, as well as due to distances between the 
composing holes. 
On the other hand, the following Figure 32 shows a different example of multiple structures 
detected where two of them are overlapped. Structure #99 (with red holes) and #101 (with 
blue holes) are identified as different structures with holes belonging to each separate system 
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due to the various geometric features of the holes themselves and characterising the two 
systems. 
 

 
Figure 32. Example of multiple and overlapping structures identified.): 

1. a cold water filament going westwards, originating from the southward upwelling jet 
that runs along the western coast of Portugal; 

2. a cold water filament going southwards, extending over Cape St. Vincent the 
upwelling jet mentioned above; 

3. a clear stream of cool water running along the southern Iberian coast; 
4. a warm countercurrent originating in the Gulf of Cádiz and running along the southern 

Iberian coast, eventually reaching Cape St. Vincent and turning northwards. 
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A set of SST maps, where a number between 1 and 4 is assigned by experts to each, form a 
labelled dataset which can be used as input for some classical supervised automatic 
classification algorithms. However, several problems arise from this approach due to the 
peculiar nature of the images: 

• depending on the atmospheric conditions at the time of detection (e.g. cloud 
coverage), the majority of images shows some sort of “noise” which interferes with 
the outcome of the algorithms; 

• even if the satellites provide some hundreds of images per day, only a few of them 
(usually 2–3 per day) cover, even only partially, the area of interest, and considering 
that it is likely that some of them are completely useless due to the aforementioned 
noise, obtaining a large enough labelled dataset requires time and effort; 

• the four classes of events appear in nature with uneven frequencies, type 3 being the 
most common (almost 2 out of 3 recognized patterns belong to it on average), but 
many classification algorithms need balanced classes—usually this problem can be 
solved by discarding samples from overnumbered classes, but that is not an option in 
this case since good-quality images are already so scarce; 

• even experts sometimes are unsure about the attribution of an image to a class 
because of a variety of factors (e.g. two or more events could happen simultaneously 
and none of them is prominent enough); human errors may also occur during this 
manual classification; 

• usually an upwelling event is present and recognizable for a period of time of 1–2 
weeks, but the temporal relation between consecutive images is not taken into 
account when a label is assigned, except for ambiguous cases. 

Figure 1. Examples of patterns identified in SST maps. 
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In Task 8.5 of NAUTILOS, a dedicated tool for the analysis and classification of this dataset has 
been developed. This tool is described in depth in section IV-Errore. L'origine riferimento non 
è stata trovata.. 

2. BENTHIC IMAGERY CLASSIFICATION 

This section concerns a description of the most relevant approaches in underwater optical 
image analysis. The description focuses on unsupervised and semisupervised methods for 
image segmentation purposes. 

2.1. Segmentation through unsupervised techniques 
Underwater imagery capture and analysis is a commonly employed system to perform 
assessment of marine biodiversity. Amongst the existing approaches the usage of 
photoquadrat sampling is a largey adopted technique [7]. It consists of collecting images of 
the seabed holding a rectangular plastic frame, with known dimensions, rigidly fixed in front 
of the camera. Thus, the frame is constantly kept in the same position within the visual field 
and, since the plastic frame dimensions are known, this system allows to accurately delimit 
the surveyed scene and to subsequently perform metric analysis. The analysis usually aims at 
identifying and grouping the image regions that relate to the various biological specimens, 
and counting them to estimate the relative samples sizes. The input data undergo preliminary 
processing stages where the frame is automatically identified through detection of the 
quadrat area. Calibration and image enhancement can be applied as optional steps. The main 
biological assessment stage can be implemented by one of the following methods: 
a) free hand drawing: it consists in manually assigning labels to the specimen in a quadrat, 

by directly drawing on the image the contours that enclose each related specimen 
region. Then, the several user-defined areas can be associated to different biological 
species and a quantitative assessment on those image subsets is carried out to provide 
i) the specimen percentage coverage, ii) the areas in metric units, iii) statistics on the 
population in their habitats, iv) health status of each specimen, etc. 

b) grid cell count: this method consists in subdividing the quadrat in a grid of subquadrats 
and performing the biological assessment described at previous point within each 
subquadrat. 

c) random point count: this method implies the biological assessment through random 
sampling performed on the set of quadrat image pixels. Given the input image, a 
number of pixels is randomly chosen and each selected pixel is manually assigned to a 
category, then the number of individuals for each species is counted and eventually the 
biological statistics is inferred for each species. 

d) automatic image segmentation: this method applies automatic segmentation to the 
input image based on statistical region merging (SRM), proposed in [8]. This method 
performs a partitioning of the input image in several segments based on a criterion of 
homogeneity in terms of pixel intensity and color. 

The latter method has been claimed to be enough accurate and computationally efficient for 
the research purposes of the marine biologist. SRM is a region merging algorithm that 
addresses the image segmentation problem as a statistical test performed between two 
generic image regions. The formal predicate of the test states that the considered regions can 
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be merged if they are sufficiently similar. The similarity criterion is based on the average 
values of the pixels’ intensities, estimated locally within the considered regions. If the 
difference between the computed quantities lies below a certain threshold the two regions 
are considered as part of the same region and they are accordingly merged. The method is 
completely unsupervised since the mentioned threshold is computed based solely on the 
pixel cardinalities of the considered regions. The algorithm segments 512x512 images in 
about 1 second on Intel Pentium® IV 2.40 GHz processor. 

2.2. Segmentation through semisupervised techniques 
Segmentation of underwater imagery can be performed also taking into account the textural 
information intrinsic in the appearance of the surveyed scenario. Considering the human 
vision system as a basis for comparison, the surface appearance of objects, as perceived by 
the eye, is exploited at an early stage to provide a preliminary categorization of the scene. 
Due to its primary role in human perception it represents a fundamental topic in computer 
vision, as testified by the plethora of associated literature. Texture is defined as “a spatial 
pattern of local surface radiances giving rise to the perception of surface homogeneity” [9]. 
Based on this definition many tools have been proposed to capture texture signature and 
provide the basis for its quantitative assessment. Concerning the image segmentation 
problem, a popular approach consists in filtering an input image through a bank of Gabor 
kernels. Their usage has been largely exploited for image segmentation also within the 
underwater exploration domain [10]. A two-dimensional Gabor kernel is a complex-valued 
function mapping ℝ!to ℂ, with the following form: 
 

ℎ(𝑥, 𝑦) = 𝑔(𝑥", 𝑦") ∙ exp[2𝜋𝑗(𝑈𝑥 + 𝑉𝑦)] 
 
where (𝑈, 𝑉) represents the 2D sinusoidal frequency, (𝑥", 𝑦") = (𝑥 cos𝜙 +
𝑦 sin𝜙 ,−𝑥 sin𝜙 + 𝑦 cos𝜙)	 are generically rotated coordinates, and 𝑔(𝑥", 𝑦") is a Gaussian 
kernel: 
 

𝑔(𝑥, 𝑦) = A
1

2𝜋𝜆𝜎!D ∙ exp E−
(𝑥/𝜆)! + 𝑦!

2𝜎! G 

 
Hence, ℎ(𝑥, 𝑦) is a complex sinusoidal grating modulated by a two-dimensional Gaussian 
function with aspect ratio 𝜆, scale parameter 𝜎, and major axis oriented at an angle 𝜙 from 
the 𝑥-axis. Being a sinusoidally modulated Gaussian, the Gabor kernel transforms into 
another Gaussian shaped function in the Fourier domain, with orientation and frequency 
properties defined respectively by 𝜙 and (𝑈, 𝑉). The convolution of an image with such a 
kernel entails the selective filtering of those components that share frequency similarities 
with the modulating sine, and that match with the orientation of the Gaussian kernel. The 
magnitude of the filtered image will be maximized over those regions of the original image 
characterized by the particular spatial frequency attributes to which the filter is tuned. 
Applying a filter bank to an image, with a properly chosen set of orientation and frequency 
parameters, returns an array of textural informative values for every pixel. This array can be 
fed to clustering algorithms, e.g. K-means, to group pixels exhibiting some kind of 
homogeneity. Eventually, a label is assigned to each cluster, thus fulfilling an unsupervised  
segmentation task, as proposed in [11]. 
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The described Gabor filters bank has been tested within NAUTILOS to deal with the task of 
the automatic identification of relevant areas, i.e. potentially representing objects of interest, 
within underwater imagery of Mediterranean benthos habitats. 

3. SEAFLOOR FAUNA DETECTION 

This section reports the analysis and state-of-the-art of available image analysis methods 
dedicated to the detection of specific marine fauna species. Following discussion between 
NAUTILOS partners, CNR-IRBIM raised the issue of a specific open problem concerning the 
count of one particular fauna species, the Norway lobster (Nephrops norvegicus) [12, 13], a 
seafloor resident species of mollusc. 
Surveys are being conducted to provide fishery-independent stock size estimations of the 
lobster, based directly on burrow counting using the survey assumption of “one animal = one 
burrow”. However, stock size may be uncertain depending on true rates of burrow occupation 
[14]. This problem is studied also in the context of the International Council for the 
Exploration of the Sea (ICES) with its specific Working Group on Nephrops Surveys (WGNEPS). 
The main concern is that this counting activities are actually performed manually by several 
experts manually tagging the recorded underwater videos, and cross-checking the outcomes 
to have a more precise outcome. As it can be clear such work is very time-demanding, 
requiring several experts working on the same videos, and it is exposed to the subjectivity of 
the specific groups of experts. Thus any progress towards an automatic or even semi-
automatic processing would be a valuable support in this activity [15]. 
Focusing on the detection and counting of burrows built by Nephrops individuals, the first 
analysis reports a wide variety and complexity of the structures (in terms of 3D constructions 
starting from the opening and down to the bottom) and the appearance of the structures (as 
they appear from the television recording showing the seafloor) [16]. Furthermore, another 
difficult issue arises from the differences between diverse areas where this counting needs to 
be performed, and thus slightly different species or behaviour of this Nephrops. For instance, 
the samples from the Adriatic sea shows a much higher number of burrows, having a smaller 
size with respect with Scottish footages, which have much fewer but larger burrows. 
As reported by experts and researchers working on this topic, not many studies have been 
made on this topic, as the existence and reports from ICES-WGNEPS witnesses. Among the 
few works in literature dealing with this, we identified, as part of the WGNEPS group, the 
work done in [17] using the deep learning paradigm, which is actually under refinements and 
shows promising results, although several risks have emerged, such as the need for many 
manually tagged samples to train the network, as well as the need for different training and 
testing sets for different reference scenarios (e.g. the various environments and countries 
where the recordings are made). Moreover, a call for a standardisation effort over these 
television recordings is made. 
No other specific works have been found using other machine vision approaches based on 
novel promising deep learning paradigms or more consolidated classical criteria. We then 
decided to develop an approach for supporting automatic detection and counting of burrows, 
based on a more classical machine vision approach that will be described in detail in section 
IV-6. 
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IV. DEVELOPED ALGORITHMS 
After the environmental domains have been described and the state-of-the-art in each case 
study, this section presents and discusses in detail the specific algorithms designed and 
implemented to support domain experts. A particular focus is dedicated to presenting the 
various user interfaces created for each of the purposes. 

4. SEA SURFACE TEMPERATURE PATTERN CLASSIFICATION 

The manual classification by experts assigns a type of event to a static map of the SST in the 
area at a precise date and time; within the NAUTILOS project, a more dynamical approach 
was followed, where the temporal relations between the SST values registered in a 
geographical point are organised and analysed. A series of tools for the SST analysis and 
pattern classification have been developed using the Python 3 programming language. 

4.1. Plot SST values against time 
The first tool extracts the SST information from a set of netCDF files and plots it against time. 
For simplicity of use, the tool is supplied with a Graphical User Interface (GUI), whose main 
window is represented in Figure 2. More information on this tool can be found in [18]. 
 

 
In the GUI it is possible to select the directory containing the netCDF files and the space and 
time parameters of the plot. In particular, there are two “modes” for the space coordinates: 
in “Single spot” mode, the user is asked for a latitude and longitude (expressed in decimal 
degrees, with positive/negative values representing N/S and E/W respectively) and a 
resolution (expressed in decimal degrees) such that, if 𝑙𝑎𝑡, 𝑙𝑜𝑛 and 𝑟𝑒𝑠 are those values, the 
SST value for the point with coordinates (𝑙𝑎𝑡, 𝑙𝑜𝑛) for a single netCDF file is computed by 
averaging all the SST values contained in that file with coordinates in the square 
[𝑙𝑎𝑡 − 𝑟𝑒𝑠 2⁄ , 𝑙𝑎𝑡 + 𝑟𝑒𝑠 2⁄ ] × [𝑙𝑜𝑛 − 𝑟𝑒𝑠 2⁄ , 𝑙𝑜𝑛 + 𝑟𝑒𝑠 2⁄ ]. This is done because the files are 
not aligned to the grid, meaning that it is not possible to choose an exact value for the latitude 
and longitude that appears in all the netCDF files. Typical values for the resolution range 
between 0.01 and 0.05. 
In “Area” mode, the tool produces a plot (spaghetti plot) by superimposing all the graphs 
relative to points in a specified grid. In particular, the four boundaries of the grid (minimum 

Figure 2. Main window of the SST plot GUI. 
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latitude, maximum latitude, minimum longitude, maximum longitude) are specified together 
with the grid resolution—more precisely, if 𝑙𝑎𝑡, 𝐿𝐴𝑇, 𝑙𝑜𝑛, 𝐿𝑂𝑁 and 𝑟𝑒𝑠 are these values, then 
each point in the grid has coordinate (𝑖, 𝑗) with 

𝑖 ∈ {𝑙𝑎𝑡, 𝑙𝑎𝑡 + 𝑟𝑒𝑠, 𝑙𝑎𝑡 + 2 𝑟𝑒𝑠, … , 𝑙𝑎𝑡 + 𝑘 𝑟𝑒𝑠},
𝑗 ∈ {𝑙𝑜𝑛, 𝑙𝑜𝑛 + 𝑟𝑒𝑠, 𝑙𝑜𝑛 + 2 𝑟𝑒𝑠, … , 𝑙𝑜𝑛 + ℎ 𝑟𝑒𝑠},  

where 𝑘 is the minimum value such that 𝑙𝑎𝑡 + (𝑘 + 1) 𝑟𝑒𝑠 ≥ 𝐿𝐴𝑇 and ℎ is the minimum 
value such that 𝑙𝑜𝑛 + (ℎ + 1) 𝑟𝑒𝑠 ≥ 𝐿𝑂𝑁. The resulting plot contains a graph for each point 
with coordinates (𝑖, 𝑗) and the SST for that point is computed as the average over the small 
square [𝑖, 𝑖 + 𝑟𝑒𝑠] × [𝑗, 𝑗 + 𝑟𝑒𝑠]. Figure 3 shows an example of a spaghetti plot: graphs 
relative to neighbouring points are coloured using similar colours, so that it is easier to 
recognize trends in different zones of the grid. 

 
A series of adjustments can be performed before producing the plot. First of all, it is possible 
to take into account the part of the variation in temperature in a period of time due to the 
natural annual trend, which is assumed to be sinusoidal of the form 

𝑇(𝑡) = 𝐴  sin(2𝜋𝑡/𝜔 + 𝜙) + 𝜇 
where 𝑡 is the time in days, 𝐴, 𝜙 and 𝜇 are parameters (the tool has a subroutine that is able 
to compute them by interpolating SST values from a suitable dataset; they can also be 
provided directly, in case they have been computed previously) and 𝜔 = 365.256363004 is 
the duration of the sidereal year. Figure 4 shows an example of interpolation for the year 
2017. In particular, if 𝑆𝑆𝑇(𝑡) is the SST value at time 𝑡, with this adjustment enabled the tool 
produces plots of the function 𝑆𝑆𝑇"(𝑡) = 𝑆𝑆𝑇(𝑡) − (𝑇(𝑡) − 𝑇(𝑡#)) instead, where 𝑡# is the 
starting time of the plot; it is assumed that the SST is exact at time 𝑡#. The difference between 
the plots with and without correction is small, as is shown in Figure 5. 

Figure 3. Example of a spaghetti plot (right). The SST map on the left is relative to a type 3 event identified on 19th September 
2017 at 22:13 UTC (corresponding to the red vertical line in the plot on the right). On the top left: detail of the target area for 
the spaghetti plot (in this case [36.5° N, 37° N]×[9.5° W, 9° W] with a resolution of 0.05°) and reference grid, with each square 
corresponding to the graph with the same colour in the spaghetti plot. 
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Another possible adjustment regards if and how “bad quality” data is considered. Recall that 
the netCDF files have a layer that describes the quality of the data inside them. The tool is 
able to either discard completely SST values that are marked as “bad quality” inside the files, 

Figure 4. SST annual trend for 2017 in the window [36° N, 37° N]×[10° W, 9° W]. The blue dots represent the average SST in 
the window; the red line is the interpolated curve. In this case 𝐴 = −2.564578038371188, 𝜙 = 0.9652411407664284, 
𝜇 = 18.242557839045013. 

Figure 5. Spaghetti plots relative to the same area as Figure 4 and the same period of time. On the left: no adjustment is 
applied; on the right: values are modified according to the assumed annual SST trend. 
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or give them a lower weight when computing the averages, with the value of this weight given 
by the user. 
The last adjustment is possible only for the Aqua dataset: among metadata in those files there 
is the “cloud” mask; the tool is able to discard a SST value if the point is marked as cloud-
covered in the netCDF file. 
A preliminary analysis of some spaghetti plots produced with this tool already shows some 
promising results in recognizing patterns of SST trends [19, 20]. 

4.2. Custom Python classes for SST data management 
Since the extraction of data directly from the netCDF files may take a long time, depending 
on the extension of the time period and on the resolution chosen, two custom Python classes 
have been defined for the storage and management of the SST data: SpaghettiData and 
SpaghettiPlot. Detailed technical information about these two classes can be found in [21]; 
here the main features are reported. 
An object of the SpaghettiData class stores information about the SST values in a single 
geographical point for a period of time; more precisely, given a latitude 𝑙𝑎𝑡, a longitude 𝑙𝑜𝑛 
and a resolution 𝑟𝑒𝑠, it contains a list of pairs (𝑡, 𝑆𝑆𝑇(𝑡)) where 𝑡 is a date/time reference 
and 𝑆𝑆𝑇(𝑡) is the SST value computed as average on the square [𝑙𝑎𝑡, 𝑙𝑎𝑡 + 𝑟𝑒𝑠] × [𝑙𝑜𝑛, 𝑙𝑜𝑛 +
𝑟𝑒𝑠]. 
Despite all the adjustments described in the previous section, it is possible that bad quality 
data from some netCDF files may be used to populate a SpaghettiData object (e.g. the satellite 
may register some low temperature, which at human eye appears clearly incoherent with the 
temperatures in that point in the days around, but it fails to label it as “bad quality” data). To 
try to remove this outlier values, a “regularizing” tool has been developed. It can operate in 
two modes: 

• in “discard” mode, first of all the standard deviation 𝜎 of the series of SST values in 
the SpaghettiData object is computed; then, for each pair (𝑡$ , 𝑆𝑆𝑇(𝑡$)) the two 
previous (𝑡$%!, 𝑡$%&) and the two next (𝑡$'&, 𝑡$'!) timestamps in the SpaghettiData 
object are considered and the median 𝑚 of the set 
{𝑆𝑆𝑇(𝑡$%!), 𝑆𝑆𝑇(𝑡$%&), 𝑆𝑆𝑇(𝑡$), 𝑆𝑆𝑇(𝑡$'&), 𝑆𝑆𝑇(𝑡$'!)} is computed; the pair 
(𝑡$ , 𝑆𝑆𝑇(𝑡$)) is removed from the object if 𝑆𝑆𝑇(𝑡$) does not belong to the interval 
[𝑚 − 𝑥𝜎,𝑚 + 𝑥𝜎] where 𝑥 is a fixed value (for example 𝑥 = 1.5); 

• in “replace” mode, for each pair (𝑡$ , 𝑆𝑆𝑇(𝑡$)) the previous (𝑡$%&) and the next (𝑡$'&) 
timestamps in the SpaghettiData object are considered and the median 𝑚 of the set 
{𝑆𝑆𝑇(𝑡$%&), 𝑆𝑆𝑇(𝑡$), 𝑆𝑆𝑇(𝑡$'&)} is computed; the pair (𝑡$ , 𝑆𝑆𝑇(𝑡$)) is then replaced in 
the SpaghettiData object with the pair (𝑡$ , 𝑚). 

Figure 6 shows an example of the effects of the regularization. 
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An object of the SpaghettiPlot class is essentially a coherent collection of SpaghettiData 
objects, with additional features that help to produce plots easier. Given a rectangular area 
in terms of minimal and maximal latitudes and longitudes, and a resolution, this area is 
divided into a grid in the same way as the “Area” mode of the tool described in section 4.1; 
the SpaghettiPlot object contains one SpaghettiData object for each point (𝑖, 𝑗) of the grid, 
such that the reference latitude and longitude for the SpaghettiData object are 𝑖 and 𝑗 
respectively, and its resolution matches the one of the SpaghettiPlot object. 

4.3. Mobile windows 
If it is possible to plot the SST by extracting the information directly from the netCDF files, 
thanks to the GUI described in section 4.1, the data structures defined through the Python 
classes described above allow a more systematic approach. In fact, theoretically one could 
produce a “big” spaghetti plot covering all the area of interest (recall that in this case of study 
it is the rectangle [35° N, 40° N]×[12° W, 6° W]); however, the huge amount of superimposed 
graphs, in particular if the resolution is small, would make this plot unreadable. 
One possible solution is to produce a collection of SpaghettiData objects containing SST 
information for all the points of the area of interest for a particular period of time, and then 
generate spaghetti plots relative to a smaller target window with fixed dimension (e.g. a 
square of 0.5°×0.5° in latitude/longitude) that shifts, covering the entire area (i.e. a mobile 
window). 
A specific tool for producing all these spaghetti plot has been developed. It takes as input the 
collection of SpaghettiData objects, the limits of the area of interest, the dimensions of the 
mobile window and the stride, and produces all the spaghetti plots relative to the positions 

Figure 6. Top: example of spaghetti plot before the regularization; bottom: the same spaghetti plot after regularization, on 
the left with mode "discard" and on the right with mode "replace". 
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of the mobile window (Figure 7 shows some examples). The aim is to identify patterns in SST 
trends by studying spaghetti plots relative to areas where experts identified upwelling events. 

 

Figure 7. Example of spaghetti plots produced with the mobile window tool. In this case a 0.5°×0.5° window has been selected, 
with a resolution of 0.125° and a stride of 0.25°. 
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4.4. Statistics analysis and classification 
All the spaghetti plots relative to areas in which experts have identified SST patterns linked to 
upwelling events have been analysed in search for patterns in the SST trends. The objective 
is to attribute numerical values to each SpaghettiData object, so that a set of classification 
rules could be defined depending on those values. The chosen statistics for a single 
SpaghettiData object are: 

• the mean of all the SST values; 
• the standard deviation of all the SST values; 
• the regression coefficient, i.e. the slope of the regression line computed from the pairs 

(𝑡, 𝑆𝑆𝑇(𝑡)). 

Moreover, the number of SST values contained in a SpaghettiData object is chosen as an index 
of reliability, meaning that statistics computed from too few data are more likely to produce 
unreliable results. 
In order to help analysing the statistics, a tool for their visualisation has been developed (see 
Figure 8). 
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For the classification task, a set of rules has been drafted. The rules assign four scores, one 
for each of the types of event (hereby called E1, E2, E3 and E4), to each point in the map, 
according to the values of the statistics both in that point and in neighbouring ones. The rules 
chosen are summarized in the following list; for a square (𝑖, 𝑗), the mean, the standard 
deviation and the regression coefficient are denoted by 𝜇(𝑖, 𝑗), 𝜎(𝑖, 𝑗) and 𝑟(𝑖, 𝑗) respectively; 
moreover, the neighbouring points of (𝑖, 𝑗) are denoted with abbreviations depending on 
their relative position with respect to (𝑖, 𝑗): 
 

  𝑁𝑁   
 𝑁𝑊 𝑁 𝑁𝐸  

𝑊𝑊 𝑊 (𝑖, 𝑗) 𝐸 𝐸𝐸 
 𝑆𝑊 𝑆 𝑆𝐸  
  𝑆𝑆   

Figure 8. Visual representation of the statistics for SpaghettiData objects in the area of interest, in the period of 15 days from 
1st to 15th September 2016, with SpaghettiData objects with resolution 0.25°. The expected number of data is two SST values 
per day (i.e. 30 values in a 15-day period), and SpaghettiData objects with less than 5 values are discarded. 
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For E3 and E4 rules, an additional notation is necessary: the coastal neighbourhood of a point 
(𝑖, 𝑗) is the set 

𝑁(𝑖, 𝑗) = {𝑥 ∈ {𝑁, 𝑆,𝑊, 𝐸, 𝑁𝑁, 𝑆𝑆,𝑊𝑊,𝐸𝐸,𝑁𝑊, 𝑆𝐸}	such	that	|𝑐(𝑥) − 𝑐(𝑖, 𝑗)| ≤ 1} 
where 𝑐(𝑖, 𝑗) is a function that measures the distance of the point (𝑖, 𝑗) from the coastline as 
the minimum of the values q(𝑖 − 𝑙)! + (𝑗 − 𝑚)! where (𝑙,𝑚) varies in the set of all coastal 
points; in addition to this, the northwestern and southeastern neighbourhoods of (𝑖, 𝑗) are 
the sets 

𝑁()(𝑖, 𝑗) = 𝑁(𝑖, 𝑗) ∩ {𝑁,𝑊,𝑁𝑁,𝑊𝑊,𝑁𝑊},
𝑁*+(𝑖, 𝑗) = 𝑁(𝑖, 𝑗) ∩ {𝑆, 𝐸, 𝑆𝑆, 𝐸𝐸, 𝑆𝐸}.  

1. Rules for E1. A point (𝑖, 𝑗) gets a score for E1 only if its temperature decreases at a certain 
rate, i.e. 𝑟(𝑖, 𝑗) < −0.05 and 𝜎(𝑖, 𝑗) > 0.2. In this case: 
1.1. if the point 𝐸 also decreases in temperature, and does before (𝑖, 𝑗), i.e. 𝑟(𝑖, 𝑗) >

𝑟(𝐸): +6 points; 
1.2. if the point 𝐸𝐸 also decreases in temperature, and does before (𝑖, 𝑗), i.e. 𝑟(𝑖, 𝑗) >

𝑟(𝐸𝐸): +3 points; 
1.3. if both the two previous rules are applied, and also the regression coefficients are 

sorted as 𝑟(𝑖, 𝑗) > 𝑟(𝐸) > 𝑟(𝐸𝐸): +2 points; 
1.4. if on average (𝑖, 𝑗) is colder than the points to its north, i.e. 𝜇(𝑖, 𝑗) < mean	of	

{𝜇(𝑁𝑊), 𝜇(𝑁), 𝜇(𝑁𝐸)}: +4 points; 
1.5. if on average (𝑖, 𝑗) is colder than the points to its south, i.e. 𝜇(𝑖, 𝑗) < mean	of	

{𝜇(𝑆𝑊), 𝜇(𝑆), 𝜇(𝑆𝐸)}: +4 points; 
1.6. if both the two previous rules are applied: +2 points. 

2. Rules for E2. A point (𝑖, 𝑗) gets a score for E2 only if its temperature decreases at a certain 
rate, i.e. 𝑟(𝑖, 𝑗) < −0.05 and 𝜎(𝑖, 𝑗) > 0.2. In this case: 
2.1. if the point 𝑁 also decreases in temperature, and does before (𝑖, 𝑗), i.e. 𝑟(𝑖, 𝑗) >

𝑟(𝑁): +6 points; 
2.2. if the point 𝑁𝑁 also decreases in temperature, and does before (𝑖, 𝑗), i.e. 𝑟(𝑖, 𝑗) >

𝑟(𝑁𝑁): +3 points; 
2.3. if both the two previous rules are applied, and also the regression coefficients are 

sorted as 𝑟(𝑖, 𝑗) > 𝑟(𝑁) > 𝑟(𝑁𝑁): +2 points; 
2.4. if on average (𝑖, 𝑗) is colder than the points to its east, i.e. 𝜇(𝑖, 𝑗) < mean	of	

{𝜇(𝑁𝐸), 𝜇(𝐸), 𝜇(𝑆𝐸)}: +4 points; 
2.5. if on average (𝑖, 𝑗) is colder than the points to its west, i.e. 𝜇(𝑖, 𝑗) < mean	of	

{𝜇(𝑁𝑊), 𝜇(𝑊), 𝜇(𝑆𝑊)}: +4 points; 
2.6. if both the two previous rules are applied: +2 points. 

3. Rules for E3. A point (𝑖, 𝑗) gets a score for E3 only if its temperature decreases at a certain 
rate, i.e. 𝑟(𝑖, 𝑗) < −0.05 and 𝜎(𝑖, 𝑗) > 0.2. In this case: 
3.1. if all the other points of 𝑁(𝑖, 𝑗) also decrease in temperature, i.e. 𝑟(𝑥) < 0 for all 𝑥 ∈

𝑁(𝑖, 𝑗): +5 points; 
3.2. if the points to the northwest of (𝑖, 𝑗) decrease in temperature before (𝑖, 𝑗): +2𝑛 

points, where 𝑛 is the number of points 𝑥 ∈ 𝑁()(𝑖, 𝑗) such that 𝑟(𝑖, 𝑗) > 𝑟(𝑥); 
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3.3. if the points to the southeast of (𝑖, 𝑗) decrease in temperature after (𝑖, 𝑗): +𝑘 points 
for each 𝑥 ∈ 𝑁*+(𝑖, 𝑗) such that 𝑟(𝑥) > 𝑟(𝑖, 𝑗), where 𝑘 = 3 for 𝑥 = 𝑆 or 𝐸 and 𝑘 =
2 otherwise; 

3.4. if on average (𝑖, 𝑗) is warmer than the points to its northwest, i.e. 𝜇(𝑖, 𝑗) > mean	of	
{𝜇(𝑥)	for	𝑥 ∈ 𝑁()(𝑖, 𝑗)}: +4 points; 

3.5. if on average (𝑖, 𝑗) is colder than the points to its southeast, i.e. 𝜇(𝑖, 𝑗) < mean	of	
{𝜇(𝑥)	for	𝑥 ∈ 𝑁*+(𝑖, 𝑗)}: +4 points; 

3.6. if both the two previous rules are applied: +2 points. 
4. Rules for E4. A point (𝑖, 𝑗) gets a score for E4 only if its temperature increases at a certain 

rate, i.e. 𝑟(𝑖, 𝑗) > 0.05 and 𝜎(𝑖, 𝑗) > 0.2. In this case: 
4.1. if all the other points of 𝑁(𝑖, 𝑗) also increase in temperature, i.e. 𝑟(𝑥) > 0 for all 𝑥 ∈

𝑁(𝑖, 𝑗): +5 points; 
4.2. if the points to the southeast of (𝑖, 𝑗) increase in temperature before (𝑖, 𝑗): +2𝑛 

points, where 𝑛 is the number of points 𝑥 ∈ 𝑁*+(𝑖, 𝑗) such that 𝑟(𝑖, 𝑗) > 𝑟(𝑥); 
4.3. if the points to the northwest of (𝑖, 𝑗) increase in temperature after (𝑖, 𝑗): +𝑘 points 

for each 𝑥 ∈ 𝑁()(𝑖, 𝑗) such that 𝑟(𝑥) > 𝑟(𝑖, 𝑗), where 𝑘 = 3 for 𝑥 = 𝑁 or 𝑊 and 𝑘 =
2 otherwise; 

4.4. if on average (𝑖, 𝑗) is warmer than the points to its northwest, i.e. 𝜇(𝑖, 𝑗) > mean	of	
{𝜇(𝑥)	for	𝑥 ∈ 𝑁()(𝑖, 𝑗)}: +4 points; 

4.5. if on average (𝑖, 𝑗) is colder than the points to its southeast, i.e. 𝜇(𝑖, 𝑗) < mean	of	
{𝜇(𝑥)	for	𝑥 ∈ 𝑁*+(𝑖, 𝑗)}: +4 points; 

4.6. if both the two previous rules are applied: +2 points. 
5. Global rules. 

5.1. (high variation) if the SST variation is significant, that is 𝜎(𝑖, 𝑗) > 1 and either 𝑟(𝑖, 𝑗) <
−0.1 (for E1, E2 and E3) or 𝑟(𝑖, 𝑗) > 0.1 (for E4): +1 point; 

5.2. (global temperature) if on average (𝑖, 𝑗) is either “cold” (for E1, E2 and E3) or “warm” 
(for E4), meaning that 𝜇(𝑖, 𝑗) is less (resp. greater) than the mean of all the values 
𝜇(𝑥) for all the points 𝑥 in the area of interest: the score gets a boost of ×1.2; 

5.3. (coast distance) according to the experts, E1- and E2-type events happen far from the 
coast, whereas E3- and E4-type events happen near the coast; so if either 𝑐(𝑖, 𝑗) ≤ 3 
(for E1 and E2) or 𝑐(𝑖, 𝑗) > 3 (for E3 and E4): the score gets a penalty of ×0.5. 

The scores for each point are then normalized in the interval [0,1] according to the maximum 
score that can be achieved (see Figure 9). 
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In order to get a unique label among “E1”, “E2”, “E3”, “E4” or “nothing” for each point (𝑖, 𝑗), 
all the scores are compared and the results are organised in a single “heatmap”, where each 
point (𝑖, 𝑗) is coloured according to the maximal (normalized) scores, but only if this score is 
greater than a certain threshold (set to 0.6). This map reports also the fraction (as a 
percentage) of expected data for each classified square, so that it is easy to have an idea of 
the reliability of the classification at a glance (see Figure 10). 

Figure 9. Scores for the squares computed according to the values of the statistics in Figure 8. 
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This instrument is provided to experts as a decision support tool, helping them to analyse 
large sets of images by identifying areas that are more likely to show upwelling events; their 
trained eye can confirm or disprove its results, and their opinions in the latter case can be 
used to refine the set of rules described above in order to improve the accuracy and reliability. 

5. BENTHIC IMAGERY CLASSIFICATION 

This section describes the preliminary implementation of a software module dedicated to the 
segmentation of underwater images. The specific typology of data captured for the 
mentioned purpose consists of high resolution imagery captured by optical sensors. Examples 
are presented in Figure 11. 
 

 
Figure 11. HCMR Dataset examples: (a) coral; (b) macroalga; (c) seagrass; (d) seastar; (e) mollusc; (f) sponge. 

Figure 10. Heatmap obtained from the scores of Figure 9. The tool finds a prevalent E3 event along the coast and traces of 
E1 and E2 events. 
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These images have been provided for testing purposes by the Hellenic Centre for Marine 
Research (HCMR), which is partner of the NAUTILOS consortium. They represent a 
documentation of sessile species in the Mediterranean benthic habitat, entirely located 
within the Greek archipelagus. The dataset consists of 165 color images, with dimensions 
ranging from 4000x3000 to 5472x3648 pixels, captured by expert divers through handheld 
cameras. The dataset has been arranged in six categories (corals, macroalgae, molluscs, 
seagrass, seastars and sponges), each in turn subdivided in several subcategories. Every image 
displays one single individual species out of those documented, typically represented as the 
foreground object. This dataset accounts for the biodiversity associated to the specific 
geographical location. 
In this framework, the goal of the underwater biologist is to perform an assessment about 
the species detected in the surveyed scene, estimate the amount of individuals for each 
typology, evaluate the population health status and provide related statistics. A software 
module supporting this task has been studied and designed, with the goal of performing 
automatic segmentation of the observed biological specimen, to be later exploited for a 
biological species classification stage. Some preliminary attempts have been performed, 
implementing software tests in a MATLAB (from MathWorks® version R2019b) environment. 
The main approach adopted here consists of performing image segmentation to discriminate 
between foreground and background. Basically, the procedure consists in grouping the 
captured image pixels following a homogeneity criterion directly applied to the pixels’ 
intensities, or to the output of an intermediate processing level aimed at extracting 
informative features. 

5.1. Clustering pixel intensities 
The dataset imagery nature is largely variable in terms of a number of parameters, among 
which we can mention the environmental illumination, the biological species type, the 
foreground morphology, its color properties and the unavoidable presence of multiple 
benthic specimen within the same observed scenario. All that contributes to enlarge the task 
complexity and makes it unfeasible to propose a segmentation procedure based on a univocal 
criterion. 
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Figure 12. Input image example (a) and the related RGB channels (b)-(d). 

As a first attempt the data has been directly processed through grouping algorithms (K-
means) based on the exploitation of the pixels’ intensities.  
Looking at the dataset it is undeniable that color information plays a primary role in the 
description of underwater biodiversity. Thus, the input images undergoes a first 
transformation from RGB (Figure 12) space to CIE Lab space (Figure 13). In this space the visual 
differences ascribed to color can be easily quantified, regardless of brightness variations. 
Indeed, the difference between two colors can be measured using a Euclidean distance metric 
applied to the chromaticity layers a* and b*. 
 

 
Figure 13. CIE Lab representation: (a) brightness channel L; (b) chromaticity channel a*; (c) chromaticity channel b*. 

The converted image is then processed by the K-means algorithm to group pixels belonging 
to the same category. K-means finds partitions of the image such that pixels belonging to the 
same category are as close to each other as possible, and as far from objects in other clusters 
as possible. 
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Figure 14. K-means clustering with two classes applied to an HCMR image. (a) binarized image with cluster labels; (b) cluster 
I; (c) cluster II. 

The K-means algorithm is semi-supervised, meaning that it automatically assigns a cluster 
label to each pixel, but the number of classes needs to be known in advance. Figure 14 
represents the output resulting from applying K-means to cluster pixels in an image, extracted 
from the HCMR dataset, into two clusters, while the same operation specifying three classes 
in input, is shown in Figure 15. 
 

 
Figure 15. K-means clustering with three classes applied to an HCMR image. (a) binarized image with cluster labels; (b) cluster 
I; (c) cluster II; (d) cluster III. 

It is apparent that accurately separating different species represented in the same image is a 
non trivial goal, hard to obtain even increasing the number of classes. This may be due to the 
poor discriminative power of the pixels’ intensity feature, which may not be a sufficiently 
informative feature to separate the clusters, especially in the case that two distinct objects 
exhibit similar color properties. 
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Figure 16. Orange sponge specimen (HCMR dataset). 

Another example of the application of this procedure is reported in Figure 16, where a single 
sponge specimen is observed. 
 

 
Figure 17. K-means clustering with two classes applied to an HCMR image of a sponge. (a) binarized image with cluster labels; 
(b) cluster I; (c) cluster II. 

In this case the observed specimen occupies a large image area and is clearly observed as a 
foreground object. The application of K-means with two (Figure 17) or three classes (Figure 
18) as input parameters returns similar results in terms of foreground/background 
separation. 
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Figure 18. K-means clustering with three classes applied to an HCMR image of a sponge. (a) binarized image with cluster 
labels; (b) cluster I; (c) cluster II; (d) cluster III. 

5.2. Clustering image features 
Grouping pixels solely based on the color properties is not sufficient for the segmentation 
task. Additional segmentation tests have been performed introducing in the processing 
pipeline an intermediate manipulation step devoted to the extraction of textural features, 
following the approach outlined in section III-2.2. More precisely a Gabor filtering stage is 
executed to enrich the vector of features associated with the input image, vector that will be 
fed as input to the following K-means stage. 
 

 
Figure 19. K-means clustering (two classes) of Gabor features applied to an erect dendritic sponge image: (a) input image; 
(b) cluster I; (c) cluster II. 

Through a visual assessment of the output result (see Figure 19) it is clear that the straight 
clustering of Gabor textural features in the processing pipeline is not satisfactory for the 
underwater benthic segmentation task. The separation of the represented objects is strongly 
affected by the environmental conditions. First of all, light coming from sources located at 
varying distances from the camera suffers from different intensity decreases due to 
absorption. In the underwater scenario this may lead to huge illumination unbalances 
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between background and foreground planes. Secondly, multi-source scattering affects the 
visibility introducing an unpredictable haze layer in the captured data and eventually reducing 
the signal to noise ratio. Finally, the irregularity in the visual appearance of the objects located 
within the surveyed scene (overlapping benthic specimens, fishes and particles temporarily 
present in the field of view) contributes in making the textural perception spatially 
incoherent, chaotic and not trivially separable. 
Gabor texture features gained large popularity within the scientific community due to their 
striking performance in mimicking the perceptual behavior of the human vision system. On 
the other hand it is undisputable that in the underwater domain many factors emerge and 
combine to affect their discriminative power. Future effort will be devoted to experiments 
oriented to address an image enhancement goal, introduced within the preliminary signal 
processing stages of the segmentation pipeline. In no case the implemented procedure will 
substitute the human expertise in its decision making role. Instead, it will represent a tool 
providing supporting suggestions to steer the recognition task. 

6. SEAFLOOR FAUNA DETECTION AND COUNTING 

The algorithm developed for the seafloor fauna detection and counting has been designed 
and developed using MATLAB from MathWorks® (version R2019b). The video dataset 
available for the development and testing of the algorithms has been provided by the partner 
CNR-IRBIM, consisting of several annotated videos acquired through various campaigns in 
2015 and 2016 and collected at different stations in the Adriatic Sea. 

6.1. Background and requirements 
The aim is to identify and count the number of Nephrops burrow systems falling within a fixed 
field of view along transects of known length. Counts of burrow systems are converted into 
densities at each station using the width of view and the length of the tow. Each system is 
assumed to represent one adult Nephrops with occupancy considered to be 100%. Overall 
abundance is estimated by raising the mean density to the appropriate strata area or using 
geostatistical methods. Total survey abundance, variance, and confidence limits are then 
calculated [22]. 
A screenshot from one of the videos is shown in Figure 20. These selected videos were 1 
minute long. 
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Figure 20. Screenshot from a video acquired for the Nephrops burrows detection campaigns. 

The provided annotation consists of a Microsoft® Excel table with one row per second, linked 
with the observation note (e.g. “1 system left-centre + 1 collapsed right”), and the burrow 
count for that second, i.e. how many burrow systems in that second. 
Following the extensive studies, since the early 2010s, in the ICES Working Group, the 
definition and characterising “signatures” of the Nephrops burrows have been outlined. For 
instance the appearance, the shape, and other significative features have been identified; in 
the following Figure 21 a sample of these is shown. 
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Figure 21. Significative signatures of a Nephrops burrow system. 

In the figure, the numbered areas show the following features: 
5. Crescentiform entrance of the burrow; 
6. Sediment ejecta and radial scrapings around the entrance. Claw or pereiopod indents. 

“Drive-way” 
7. Single to multiple entrances, focusing on an apparent “raised” centrum 
8. Nephrops presence 

Moreover, some high-level guidelines have been suggested to allow for a more standardised 
classification by the various ICES Working Groups experiences [22]. These guidelines were 
helpful in the design of the algorithm to develop a method that was as close as possible to 
the procedures followed by the experts in their manual (i.e. visual) efforts. The main 
guidelines are as follows: 

• Only count systems or parts of a system that cross an imaginary line just off the 
bottom of the screen. 

• Include an entrance to a burrow if part of the shadow is still within sight as it crosses 
the line. 

• Look for groups of similarly sized entrances radiating from a centrum, then look for 
Nephrops’ signatures. 

• In poor visibility conditions, distinguishing the signatures will be more challenging; due 
to the low contrast, hemispherical entrances may appear as dark circular entrances. 
The signatures will appear less clear, but the ejected sediments and the disposition of 
the inlets will be the primary indicators. 

• In the absence of Nephrops signatures, dismiss: 
o vertical holes; 
o flat holes with curved scrapings, sediment stacked in mounds. 

• If in doubt, leave it out. 
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• Distance covered whilst the view is obscured by cloud and lifting needs to be 
discounted. 

• Count and record in seconds, only for the period the sledge is moving. 

6.2. The algorithm and the GUI 
Following this and the meetings with experts who manually and visually classify the video, a 
tool based on developed algorithms and usable through a graphical user interface (GUI) has 
been designed to visualise better and test the automatic burrow detection tool. In the 
following Figure 22, the GUI is shown upon its loading. 
 

 
Figure 22. The Graphical User Interface developed for the Nephrops burrow detection tool. 

The GUI is divided into three main areas: the left-centre panel will be filled by the images to 
be processed; in the centre-right and right panels, the graphs showing information will be 
represented; while the bottom part of the interface contains the buttons and fields used for 
controlling the tool (e.g. the button for loading a video file, for automatically processing a 
range of frames, for processing a single frame or the next one…), for viewing the video/frame 
information (e.g. video length, current frame number and time within the video…), as well as 
for setting the processing parameters (e.g. sensibility of the processing filters, the minimum 
size of holes, tracking and thresholding parameters for the geometries). 
The first step to perform is selecting and loading the video to be analysed. An apparent 
problem can be seen as soon as the video is loaded due to the interlaced video acquired from 
TV recording (Figure 23). Thus, the first preprocessing step was to remove this interlacement 
and improve the single frame appearance. The difference can be seen in the following Figure 
24 from the same frame after being loaded (left), and once it has been preprocessed, and 
ready for the beginning of processing (right). 
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Figure 23. Loaded video file from GUI, showing first original frame. 

 

  
Figure 24. Example of an original frame of the video (left) and after pre-processing (right). 

The general processing steps foresee two different analysis phases: only for the first frame 
the holes identification and selection, followed by the analysis and identification of the 
structures; on the subsequent frames, these first steps are repeated, but then the optical flow 
is used to understand and create connections between the identified holes and mainly among 
the identified structures. The processing flow diagram is shown in Figure 25. 
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Figure 25. Flow diagram of the Nephrops burrow algorithm. 

As a first processing step, holes are recognised through the identification of connected 
regions in the negative image using adaptive thresholding. The result of this processing is 
shown in the rightmost panel (blue/yellow coloured graph) of the GUI (see Figure 26). 
 

 
Figure 26. Initial processing results before filtering. 

Subsequent processing steps filter over the detected holes to dismiss those below thresholds 
for dimension, shape, or position. Moreover, a colour histogram detects possible shadows 
and rejects them from the potential holes. Once the number of candidate holes is reduced, 
the geometric features are computed to analyse the shapes further. Features like: area, 
perimeter, the major axis of the area, eccentricity and circularity are extracted as well as the 
bounding box of each candidate hole. 
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Based on these parameters, rules have been defined for evaluating proximity, shape 
consistency, distances among holes and similarity by other geometric features. Based on 
these factors, structures composing a burrow system are identified. In the following Figure 
27 the detection and identification of a structure, identified with its bounding box (green 
rectangle) and its composing holes (inside the red circles) are highlighted. 
 

 
Figure 27. Detection and identification of holes (red circles) and the structure (highlighted green rectangle) composed by 
these holes; the holes in white circles are identified as candidate holes but dismissed and not associated with the structure. 

The figure also shows some holes (in white circles) that have been identified as candidate 
holes but then filtered and discarded from the identified structure, due to a missing 
correspondence to the structure’s geometric and appearance parameters. 
Another example of filtered areas is shown in the following Figure 28; here, the noise brought 
in the video by the cloud of sand caused by the movement of the sledge on the left side is 
identified and easily filtered out as a false alarm and highlighted in the large white circle. The 
small numbers next to the circles represent the dimension of the identified connected areas, 
regardless of whether they belong to a structure. Furthermore, the text box above the 
processing frame shows statistics and information about the holes and structures identified 
in the current frame. 
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Figure 28. Detection and identification of holes and structure (red circles, yellow rectangle) composed by these holes; the 
detected area in the white circle is dismissed and not associated with the structure. 

The next step, applied to all subsequent frames of the video, consists of the same detection 
and filtering steps as mentioned above, followed by an optical flow computation between the 
current frame structures and holes and the previous frame ones. 
These optical flows are computed and then filtered, considering the known motion of the 
sledge and the geometric features of both the holes and structures. The optical flows are 
shown in the GUI central-right graphs (see Figure 29). A confusion matrix is computed 
associating holes/structures in frame 𝑖 and in frame 𝑖 − 1. This matrix is also important to 
understand whether a structure is persistent in subsequent frames or changed so that it 
should be identified as a new structure. 
 

 
Figure 29. Highlight of the holes (lower yellow circle) and structures (upper yellow-circle) optical flows between the current 
frame and previous one. 

More than one structure can be present on the same frame, and the algorithm is developed 
to keep track and count them separately. In Figure 30 an example with two different 



 

 
50 

structures was detected, while in Figure 31 an instance with 3 separate structures on the 
same frame is shown. In both these situations, it can be seen that the tracking of the 
structures, shown in the upper-right-centre panel, is maintained. For the 2 structures case, 
the upper one (#8) is not present in the tracking because it is a newly identified structure and 
thus coloured in red. 
 

 
Figure 30. Example of multiple structures (2) detected. 

 
Figure 31. Another example with three different structures identified. 

In this last example, the structures numbered #102 (with holes in red) and #104 (with holes 
in blue) are identified as different and separated ones: this is due to differences in the 
geometry of the two groups of composing holes, as well as due to distances between the 
composing holes. 
On the other hand, the following Figure 32 shows a different example of multiple structures 
detected where two of them are overlapped. Structure #99 (with red holes) and #101 (with 
blue holes) are identified as different structures with holes belonging to each separate system 
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due to the various geometric features of the holes themselves and characterising the two 
systems. 
 

 
Figure 32. Example of multiple and overlapping structures identified. 

The tool is then complete, but further improvements will be applied following extended 
testing and feedback from end-users and other videos even acquired from entirely different 
environments and situations. 
 

V. CONCLUSIONS  
This deliverable represents an accompanying report for the automatic image tools designed 
and developed as the main activities of Task 8.5 within Work Package 8 in NAUTILOS. The 
report describes the work performed, starting from the identification, analysis and definition 
of diverse environmental domains and connected problems performed with the support of 
NAUTILOS partners and based on their expertise. As a part of the analysis, the state of the art 
of the literature relating to the various problems was studied. Since both the environmental 
domains and the problems are very different from each other, the state of the art needed to 
be presented in a very different way and at very different levels. 
The algorithms chosen for the automatic imagery processing objective, have been described 
and presented with the developed tools for performing analysis and testing. Considering the 
diversity of the requirements and categorization, the process of improving these algorithms 
will proceed through continuous feedbacks from experts and end-users, as part of Task 9.5 
activities. 
Whenever possible, the developed software code will be integrated with the NAUTILOS data 
infrastructure and made freely available through open access platforms. 
Furthermore, updated and improved versions of the various algorithms will be provided. 
Multidisciplinary dissemination will not be ignored, and the objectives of applied scientific 
communication will also be pursued through conferences or publications in dedicated 
journals, following a path that has already proven prolific and promising. 
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